3.140 \(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=123 \[ \frac {(6 A-29 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {C \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}-\frac {(3 A-7 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

[Out]

C*arctanh(sin(d*x+c))/a^3/d-1/5*(A+C)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^3-1/15*(3*A-7*C)*tan(d*x+c)/a
/d/(a+a*sec(d*x+c))^2+1/15*(6*A-29*C)*tan(d*x+c)/d/(a^3+a^3*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4085, 4008, 3998, 3770, 3794} \[ \frac {(6 A-29 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {C \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {(A+C) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}-\frac {(3 A-7 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

(C*ArcTanh[Sin[c + d*x]])/(a^3*d) - ((A + C)*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) - ((3*A
 - 7*C)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])^2) + ((6*A - 29*C)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d
*x]))

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3998

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx &=-\frac {(A+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {\int \frac {\sec ^2(c+d x) (-a (3 A-2 C)-5 a C \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac {(A+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {\int \frac {\sec (c+d x) \left (2 a^2 (3 A-7 C)+15 a^2 C \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{15 a^4}\\ &=-\frac {(A+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(6 A-29 C) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}+\frac {C \int \sec (c+d x) \, dx}{a^3}\\ &=\frac {C \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {(A+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(6 A-29 C) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.62, size = 236, normalized size = 1.92 \[ -\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (A+C \sec ^2(c+d x)\right ) \left (\sec \left (\frac {c}{2}\right ) \left (15 (A-5 C) \sin \left (c+\frac {d x}{2}\right )-15 A \sin \left (c+\frac {3 d x}{2}\right )-3 A \sin \left (2 c+\frac {5 d x}{2}\right )-5 (3 A-29 C) \sin \left (\frac {d x}{2}\right )+95 C \sin \left (c+\frac {3 d x}{2}\right )-15 C \sin \left (2 c+\frac {3 d x}{2}\right )+22 C \sin \left (2 c+\frac {5 d x}{2}\right )\right )+240 C \cos ^5\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )\right )}{15 a^3 d (\sec (c+d x)+1)^3 (A \cos (2 (c+d x))+A+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

-1/15*(Cos[(c + d*x)/2]*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*(240*C*Cos[(c + d*x)/2]^5*(Log[Cos[(c + d*x)/2] -
Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + Sec[c/2]*(-5*(3*A - 29*C)*Sin[(d*x)/2] + 15*(A
 - 5*C)*Sin[c + (d*x)/2] - 15*A*Sin[c + (3*d*x)/2] + 95*C*Sin[c + (3*d*x)/2] - 15*C*Sin[2*c + (3*d*x)/2] - 3*A
*Sin[2*c + (5*d*x)/2] + 22*C*Sin[2*c + (5*d*x)/2])))/(a^3*d*(A + 2*C + A*Cos[2*(c + d*x)])*(1 + Sec[c + d*x])^
3)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 184, normalized size = 1.50 \[ \frac {15 \, {\left (C \cos \left (d x + c\right )^{3} + 3 \, C \cos \left (d x + c\right )^{2} + 3 \, C \cos \left (d x + c\right ) + C\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (C \cos \left (d x + c\right )^{3} + 3 \, C \cos \left (d x + c\right )^{2} + 3 \, C \cos \left (d x + c\right ) + C\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left ({\left (3 \, A - 22 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, A - 17 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 32 \, C\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/30*(15*(C*cos(d*x + c)^3 + 3*C*cos(d*x + c)^2 + 3*C*cos(d*x + c) + C)*log(sin(d*x + c) + 1) - 15*(C*cos(d*x
+ c)^3 + 3*C*cos(d*x + c)^2 + 3*C*cos(d*x + c) + C)*log(-sin(d*x + c) + 1) + 2*((3*A - 22*C)*cos(d*x + c)^2 +
3*(3*A - 17*C)*cos(d*x + c) + 3*A - 32*C)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3
*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 1.06, size = 131, normalized size = 1.07 \[ \frac {\frac {60 \, C \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, C \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac {3 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 20 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*C*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*C*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 - (3*A*a^12*ta
n(1/2*d*x + 1/2*c)^5 + 3*C*a^12*tan(1/2*d*x + 1/2*c)^5 + 20*C*a^12*tan(1/2*d*x + 1/2*c)^3 - 15*A*a^12*tan(1/2*
d*x + 1/2*c) + 105*C*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d

________________________________________________________________________________________

maple [A]  time = 0.81, size = 139, normalized size = 1.13 \[ -\frac {A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}-\frac {C \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}-\frac {C \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \,a^{3}}+\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}-\frac {7 C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) C}{d \,a^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) C}{d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x)

[Out]

-1/20/d/a^3*A*tan(1/2*d*x+1/2*c)^5-1/20/d/a^3*C*tan(1/2*d*x+1/2*c)^5-1/3/d/a^3*C*tan(1/2*d*x+1/2*c)^3+1/4/d/a^
3*A*tan(1/2*d*x+1/2*c)-7/4/d/a^3*C*tan(1/2*d*x+1/2*c)-1/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)*C+1/d/a^3*ln(tan(1/2*d*
x+1/2*c)+1)*C

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 167, normalized size = 1.36 \[ -\frac {C {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}\right )} - \frac {3 \, A {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(C*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 60*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) +
 1) - 1)/a^3) - 3*A*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 2.64, size = 110, normalized size = 0.89 \[ \frac {2\,C\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {A+C}{4\,a^3}-\frac {A-3\,C}{2\,a^3}\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {A+C}{12\,a^3}-\frac {A-3\,C}{12\,a^3}\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (A+C\right )}{20\,a^3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^3),x)

[Out]

(2*C*atanh(tan(c/2 + (d*x)/2)))/(a^3*d) - (tan(c/2 + (d*x)/2)*((A + C)/(4*a^3) - (A - 3*C)/(2*a^3)))/d - (tan(
c/2 + (d*x)/2)^3*((A + C)/(12*a^3) - (A - 3*C)/(12*a^3)))/d - (tan(c/2 + (d*x)/2)^5*(A + C))/(20*a^3*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {A \sec ^{2}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{4}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(A*sec(c + d*x)**2/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(C*sec(c
+ d*x)**4/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

________________________________________________________________________________________